
Self-Printing Programs

Gene Michael Stover

created 2006 March 1
updated Friday, 2006 May 26

Copyright copyright 2006 Gene Michael Stover. All rights reserved. Permission to

copy, store, & view this document unmodified & in its entirety is granted.

1 What is this?

Someone sent an e-mail to a coworker, saying that a really difficult, almost
impossible programming task was to write a program which would print its own
source code.

Yes, yes yes, I recognize that all of this has been done before. But it hasn’t
been done before by me.

2 First Solution

I thought about it for a minute, then wrote a first C version1 & a first ms-dog
.bat version2 Those programs both use the same trick to satisfy the problem.
On the one hand, I feel that these two programs satisfy the programming task,
but I also admit that they use a dirty trick to do it because they require a data
file at run-time.

I also wrote a first Lisp version3 It isn’t portable; it requires clisp to run. I
also could have use the “dirty trick” which I used in the C version.

3 Second Implementation

Days later, I realized that you could do it if the program has an incomplete
string representation of its own source code, prints that string & also inserts
that string into itself in a key location. That gives you source code which
compiles to a program which again prints the incomplete string & substitutes
the string into itself, giving you the souce code for that program.

It was totally straight-forward in Lisp. (See Appendix D.)

1For the first C version, see Appendix A.
2For the first ms-dog version, see Appendix B.
3For the first Lisp version, see Appendix C.

1

It was more difficult in C because C’s printf does not contain a verba-
tim substituion field like Lisp’s format’s ~S. So I wrote a C program which
produces a program which prints its own source code. In other words, the C
program, the first time it’s run, reads its source code from a file. It produces
the source code for a program which prints its own source code by using the
“substitute the incomplete string into itself” technique. The C program I wrote
is in Appendix E. The C program it produces is in Appendix F.

4 What is a self-printing program

The programming problem was presented to me as “Can you write a program
which prints its exact source code?”

That got the point across, but I suspect a more precise definition of a self-
printing program is. . .

1. source code S which compiles to an executable program P,

2. when executed, P produces output T, &

3. T is equivalent to S. (If T & S are byte-for-byte identical, then it’s a
no-brainer that they are equivalent.)

A First C Implementation

This is the first C implementation. It uses a “dirty trick” in that it requires the
presence of the source code file at run-time.

This source code is also at http://cybertiggyr.com/gene/aaa/showself.c.

/*

* $Header: /home/gene/library/website/docsrc/aaa/RCS/showself.c,v 395.1 2008/04/20 17:25:45 gene Exp $

*/

#include <stdio.h>

int

main ()

{

FILE *fp;

int c;

fp = fopen ("showself.c", "r");

while ((c = fgetc (fp)) != EOF) {

putchar (c);

}

return 0;

}

2

B First MS-DOG .BAT Implementation

This is the first ms-dog .bat implementation. It uses a “dirty trick” in that it
requires the presence of the source code file at run-time.

This source code is also at http://cybertiggyr.com/gene/aaa/showself0.bat.

@echo off

REM This is SHOWSELF0.BAT

type showself0.bat

REM --- end of file ---

C First Lisp Implementation

This is the first Lisp implementation. It requires a non-portable feature of clisp.
Other Lisps surely have a similar feature in their own non-portable ways, so you
could use this same trick for them.

This source code is also at http://cybertiggyr.com/gene/aaa/showself.lisp.

(defun showself ()

(first (second (SYMBOL-PLIST ’showself))))

D Second Lisp Implementation

Here is a Lisp program which, in my opinion, satisfies the programming task
without using any dirty tricks. It is a self-contained program which prints its
own source code.

This source code is also at http://cybertiggyr.com/gene/aaa/showself1.lisp.

;;; File: showself1.lisp

(defvar *src* ";;; File: showself1.lisp

(defvar *src* ~S)

(defun showself1 ()

(format t *src* *src*))

")

(defun showself1 ()

(format t *src* *src*))

E Second C Implementation, part A

Here is a C program which reads its source code from a file & prints a pro-
gram which prints its own source code even when the file is not present. This
program’s output, which is the program in in Appendix F, is a program which
prints its own source code.

3

This source code is also at http://cybertiggyr.com/gene/aaa/showself1.c.

/* File: showself1.c */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

static char S_src[] = "%ooga%";

static void

S_PrintSub (char *from, char *to)

{

char *p;

for (p = from; p < to; ++p) printf ("%c", *p);

}

static void

S_PrintData (char str[])

{

int i = 0;

while (str[i] != ’\0’) {

switch (str[i]) {

case ’"’: printf ("\\\""); break;

case ’\\’: printf ("\\\\"); break;

case ’\n’: printf ("\\n\"\n \""); break;

default: putchar (str[i]);

}

++i;

}

}

static void

S_PrintRest (char str[])

{

char *p;

for (p = str; *p != ’\0’; ++p) {

putchar (*p);

}

}

int

main ()

{

char *src, *p;

FILE *fp;

int i;

4

if (strcmp (S_src, "%ooga%") == 0) {

/* Must load the source code from the file. */

fp = fopen ("showself1.c", "r");

src = (char *) malloc (10 * 1024);

fread (src, 1, 10 * 1024, fp);

fclose (fp);

} else {

src = S_src;

}

p = strstr (src, "%ooga%");

i = strlen ("%ooga%");

S_PrintSub (src, p);

S_PrintData (src);

S_PrintRest (p + i);

return 0;

}

F Second C Implementation, part B

This program was produced by the program in Appendix E. This program is
a program which prints its own source code. Unlike my first solutions to the
programming task, this one works even if the source code file is not available at
run-time.

This source code is also at http://cybertiggyr.com/gene/aaa/showself2.c.

/* File: showself1.c */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

static char S_src[] = "/* File: showself1.c */\n"

"\n"

"#include <stdlib.h>\n"

"#include <stdio.h>\n"

"#include <string.h>\n"

"\n"

"static char S_src[] = \"%ooga%\";\n"

"\n"

"static void\n"

"S_PrintSub (char *from, char *to)\n"

"{\n"

" char *p;\n"

"\n"

" for (p = from; p < to; ++p) printf (\"%c\", *p);\n"

"}\n"

"\n"

"static void\n"

5

"S_PrintData (char str[])\n"

"{\n"

" int i = 0;\n"

"\n"

" while (str[i] != ’\\0’) {\n"

" switch (str[i]) {\n"

" case ’\"’: printf (\"\\\\\\\"\"); break;\n"

" case ’\\\\’: printf (\"\\\\\\\\\"); break;\n"

" case ’\\n’: printf (\"\\\\n\\\"\\n \\\"\"); break;\n"

" default: putchar (str[i]);\n"

" }\n"

" ++i;\n"

" }\n"

"}\n"

"\n"

"static void\n"

"S_PrintRest (char str[])\n"

"{\n"

" char *p;\n"

"\n"

" for (p = str; *p != ’\\0’; ++p) {\n"

" putchar (*p);\n"

" }\n"

"}\n"

"\n"

"int\n"

"main ()\n"

"{\n"

" char *src, *p;\n"

" FILE *fp;\n"

" int i;\n"

"\n"

" if (strcmp (S_src, \"%ooga%\") == 0) {\n"

" /* Must load the source code from the file. */\n"

" fp = fopen (\"showself1.c\", \"r\");\n"

" src = (char *) malloc (10 * 1024);\n"

" fread (src, 1, 10 * 1024, fp);\n"

" fclose (fp);\n"

" } else {\n"

" src = S_src;\n"

" }\n"

" p = strstr (src, \"%ooga%\");\n"

" i = strlen (\"%ooga%\");\n"

" S_PrintSub (src, p);\n"

" S_PrintData (src);\n"

" S_PrintRest (p + i);\n"

" return 0;\n"

"}\n"

"";

6

static void

S_PrintSub (char *from, char *to)

{

char *p;

for (p = from; p < to; ++p) printf ("%c", *p);

}

static void

S_PrintData (char str[])

{

int i = 0;

while (str[i] != ’\0’) {

switch (str[i]) {

case ’"’: printf ("\\\""); break;

case ’\\’: printf ("\\\\"); break;

case ’\n’: printf ("\\n\"\n \""); break;

default: putchar (str[i]);

}

++i;

}

}

static void

S_PrintRest (char str[])

{

char *p;

for (p = str; *p != ’\0’; ++p) {

putchar (*p);

}

}

int

main ()

{

char *src, *p;

FILE *fp;

int i;

if (strcmp (S_src, "%ooga%") == 0) {

/* Must load the source code from the file. */

fp = fopen ("showself1.c", "r");

src = (char *) malloc (10 * 1024);

fread (src, 1, 10 * 1024, fp);

fclose (fp);

} else {

src = S_src;

}

7

p = strstr (src, "%ooga%");

i = strlen ("%ooga%");

S_PrintSub (src, p);

S_PrintData (src);

S_PrintRest (p + i);

return 0;

}

References

8

