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Chapter 1

Abstract

This paper presents a measure of “distance” between phrases with the same
central word and examines the probabilistic behavior of this distance. It is
defined between phrases formed with the method of KWIC concordancing
from the field of linguistics. The distance measure is formed by first replac-
ing rare words with a single, common artificial word, then matching words
between two phrases with a moving window, then using the fraction of non-
matched words in a geometric series of powers of some θ ∈ (0, 1). The data
suggest the continuity of the limiting distribution of the series for some θ,
window lengths and replacement rates. A generalized version of a theorem by
Garsia [2] states conditions under which this distribution is singular. For the
same window length and θ, two particular words with different meanings are
shown to have different distributions of their respective distance measures.
A difference in distribution functions for different words may therefore imply
a difference of meanings between two words.
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Chapter 2

Introduction

This paper defines a measure of distance between phrases which may imply
differences or similarity in meaning of the central words in the phrases. The
phrases are formed by extracting samples of text and forming KWIC con-
cordances, a tool linguists use to compare the uses of words by examining
their contexts. The distance measure is formed by creating a geometric sum
of the form Yn =

∑n
i=−n θiXi, where θ ∈ (0, 1) and the Xi are the proportion

of non-matched words between the phrases within a moving window. Yn is
not strictly a metric since it may violate the triangle inequality, but it does
give a sense of nearness between phrases. After replacing a certain number
of rare words in the text, theoretical and empirical results suggest the Yn will
have a nonsingular distribution function which still shows some relation to
the original texts. A theorem by Garsia [2] can be extended to give sufficient
conditions for the singularity of the distribution of Y = limn→∞. In section
4, the distribution of Yn is examined for two words, “fruit” and “door,” with
data taken from 158 novels.

The question of when Y has a density is related to the field of Bernoulli
convolutions [6]. In this area, the questions usually relate to the singularity or
nonsingularity of the distribution of a geometric series of the form

∑∞
i=0 θiXi

where θ < 1 and the Xi are independent identically distributed on {−1, 1}
or {0, 1}. Most of the literature in this field describes conditions for which
Y has a density and what types of sets support its distribution function.
Unlike the problems previously treated in this field, the Xi here are dependent
and take values on a finite set of order k with probabilities p1, ..., pk. For
independent Xi, Garsia [2] proved a condition under which Y must have
a singular distribution function, and his theorem is extended with minor
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modifications in section 5 to include a case in which the Xi’s are stationary
and ergodic. Hill and Blanco [3], and Sugiyama and Huzii [9] showed that
for independent Xi’s there are some values of θ for which Y has a continuous
density given by polynomial splines. In section 4, we will see our data match
these results though they are dependent.

Let F be the distribution function of Y , and Fn that of Yn. To maximize
the relation of Yn with the original text, it is desirable to alter as little text
as possible while attempting to create a nonsingular F . To achieve a non-
singular distribution function for the data shown here, some rare words must
be replaced. This will obviously remove some relevant semantic content from
the text. It may be possible to create a variant of Yn which alters the text
little or not at all, and still gives a nonsingular F . This improvement is
suggested in the final section. The suggestion stems from the fact that, from
the perspective of the linguistic community, the presentation of the data in
this paper would be considered naive, failing to account for such features
as parts of speech, tenses of verbs, plurality of nouns, and identification of
proper nouns. I hope the novelty of the statistical approach compensates for
this shortcoming.

Section two defines Y by permuting, replacing and matching words in
concordances. Section three examines the behavior of Y for the words “fruit”
and “door” in 158 novels. Section four presents a generalization of Garsia’s
theorem which partly explains the behavior seen in the data.



Chapter 3

Distances between phrases

To compute the distance between two phrases, a linguistic technique called
Key Word in Context (KWIC) concordancing is used to align phrases with
common central words. The distance between two phrases is then found by an
algorithm presented below. The apparent continuous distribution function of
this distance measure allows probabilistic comparison between phrases, which
in turn allows one to assess similarity of word use among such phrases.

In this procedure, the rarest words must be replaced to reveal a non-
degenerate probability distribution of the distances. If we do not replace
these words, the distances between phrases will be either very large or very
small with probability one. Such dichotomous distances, which correspond to
phrases that either match exactly or almost nowhere, cannot tell us about the
range of similarity between phrases, so replacement of rare words is necessary.
There is a danger of removing too many words, and if this happens, the
probability distribution again becomes singular, with most of its mass around
0. We will see that we can replace sufficiently many rare words to give a
continuous distribution without replacing enough words to remove all content
of the original phrase.

Before defining the distance between phrases, we shall see an example of
the KWIC concordances on which Y is based. In this method, phrases with
identical central words are aligned to compare the uses of the central word.
The following example shows concordances of for the word “fruit,” taken from
the novels A Christmas Carol, A Portrait of the Artist as a Young Man, A
Study in Scarlet, American Notes and An Old-Fashioned Girl :
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10 CHAPTER 3. DISTANCES BETWEEN PHRASES

...sausages, oysters, pies, puddings, fruit and punch all vanished...
...as easily as a fruit is divested of its...
...to eat of the fruit of the forbidden tree....

...ate of the forbidden fruit they would become as...
...or rust stains or fruit stains or what are...

...time corrupts the whole fruit Will you come with...
...savoury cold meats, and fruit, and wine, we started...

...islands where every known fruit vegetable and flower is...
...the green and purple fruit lay all about us...

...we never saw the fruit that Nelly didn’t look...
The concordances above reveal much about the meaning of the word

“fruit.” We can see this word is surrounded by words related to food, eating,
or plants, staining and bright colors. From this, one who did not know what
“fruit” means could surmise that a fruit is a food produced by a plant. It may
be green or purple, and may stain. One might induce from the middle phrase
that the word can be used to describe metaphorically something desirable and
forbidden. With knowledge of the surrounding words, one could infer a lot
from examining these contexts.

Much linguistic literature suggests that humans interpret meanings of
words by the contexts in which they are used ([4], [8], [5]).

If context determines the meaning of a word, then a measurement of
distance between contexts of that word should have certain properties that
relate to its meaning. Among these properties is the probabilistic behav-
ior of the distance, which should give an idea of how far apart one can
expect concordances to be. Moreover, if two different words typically are
surrounded by different patterns of contextual words, the statistical behav-
ior of the distances between their respective concordances should be different.
Any soundly-defined measure of distance will be 0 between identical copies
of a phrase, and will increase with a rise in the proportion of non-matching
words between the two phrases. In addition, a measure of distance between
two phrases should place more weight around the central word, since words
closer to the central word are more likely to relate to its meaning.

To state distinctly whether we are referring to a lexicon or a corpus (i.e.,
a collection of text), define token to be particular occurrence of a word in
the corpus. Word hereafter refers to an element of the lexicon. For example,
the phrase “the Sun and the Moon” contains four words but five tokens. We
can think of a word as a possible value in the sample space and a token as
an observed value.
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The distance between two phrases is measured as follows: First, denote
a phrase by

W ∗
1,−n, W ∗

1,(−n+1), ..., W
∗
1,−1, W

∗
1,0, W

∗
1,1, ..., W

∗
1,(n−1), W

∗
1,n.

First replace all tokens representing “rare” words with a common pseudo-
token to give a new sequence of words

W1,−n, W1,(−n+1), ..., W1,−1, W1,0, W1,1, ..., W1,(n−1), W1,n.

Denote a second phrase, after replacing these same rare words, by

W2,−n, W2,(−n+1), ..., W2,−1, W2,0, W2,1, ..., W2,(n−1), W2,n,

where both phrases are chosen so that W1,0 = W2,0, i.e., the middle words
match. In our example above,

W1,−n, W1,(−n+1), ..., W1,−1, W1,0, W1,1, ..., W1,(n−1), W1,n

might be “sausages, oysters, pies, puddings, fruit and punch all vanished,”
in which case n = 3. Our second phrase could be any other phrase from the
example. For the first phrase, define the set

SL
1,−n = {W1,−n, W1,(−n+1), ..., W1,(−n+L−1)}.

Let SL
1,−n be the set of distinct elements of SL

1,−n (i.e., with repeated values
removed). Define SL

2,−n and SL
2,−n for the second phrase similarly. Define

X−n to be the fraction of non-matching elements from SL
1,−n and SL

2,−n:

X−n =
|SL

1,−n ▽ SL
2,−n|

2L
. (3.1)

Then shift the window forward one word, defining

SL
1,−n+1 = {W1,−n+1, W1,(−n+2), ..., W1,(−n+L)}.

Again, define SL
1,−n+1, S

L
2,−n+1 and SL

2,−n+1 as for the previous window,
and define

X−n+1 =
|SL

1,−n+1 ▽ SL
2,−n+1|

2L
.

Continue this process until we have a sequence

X−n, X−n+1, ..., X0, X1, ..., Xn−L
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of 2n − L + 1 random variables that record the proportion of unmatched
tokens in windows of length L. For convenience, choose L to be odd and
re-label this sequence

X−n+(L−1)/2, ..., X0, ..., Xn−(L−1)/2.

Then define the distance between the two phrases to be

Yn =

n+(L−1)/2
∑

i=−n+(L−1)/2

θ|i|Xi (3.2)

where 0 < θ < 1. Notice that Yn is not a metric since it may violate the
triangle inequality. Hereafter, assume the Xi’s form a stationary ergodic
sequence. Since θ ∈ (0, 1) and the Xi’s take a only finite number of values
between 0 and 1, limn→∞ Yn = Y almost surely for some random variable
Y . Let Fn be the distribution function of Yn, and F be the distribution
function for Y . We will show empirical evidence that for some choices of rare
word replacement and θ, F is nonsingular. We will also present a generalized
version of a theorem by Garsia [2] that gives a sufficient condition for the
singularity of F .

If no words were be replaced Y would be singular since so many of the
tokens represent rare words. Because of the window used, common words
will often match. Most of the non-matches are caused by the appearance
of infrequently-used words. The large number of low-probability words in
a lexicon is known as Zipf’s Law [4], which states that the probability of
an appearance of a word is proportional to the reciprocal of its rank, i.e., if
the word wi is the rth

i most commonly used word, Pr(see wi) ∝ 1/ri. While
Zipf’s Law does not perfectly describe the distributions of words [4], it is a
close enough approximation to tell us that there is a large proportion of the
lexicon whose individual members are used rarely, but in sum these words
constitute a large proportion of tokens, thereby causing many non-matching
tokens, even among phrases with similar meaning. Dropping these words
forces more matches, reducing the distance. At the same time, we want to
retain any common words, especially context-dependent ones, since they are
likely to cause a match in semantically similar phrases. There is no rule
presented here for replacing rare words. The words chosen for replacement
were chosen to give an apparent density function for Y .



Chapter 4

Example: Fruit vs. Door

This section explores Yn via an example using data from 158 novels whose
copyrights have expired. All were either written in English or are English
translations. A list of all the novels used appears in the appendix. They
were obtained from www.bibliomania.org.

The data were created from the corpora as follows. All punctuation was
removed from the novels’ text. Plural forms of nouns were treated as distinct
words, as were different tenses of the same verb. The possessive modification
’s was treated as a distinct word. (For a treatment of the question of what
is or is not a word, see [4]). All phrases containing “fruit” and “door” were
extracted, and concordances were formed with either “fruit” or “door” as
the central token, surrounded by the leading and trailing eleven tokens, i.e.
n = 11 in (3.2). The window length L was chosen to be 5. All phrases were
2n + 1 = 23 tokens long.

The following concordances illustrate how the definition of distance in
(3.2) is used for these novels. The first excerpts show two phrases, the first
from A Double-Barrel Detective Story by Mark Twain and the second from
Notre-Dame de Paris by Victor Hugo.

...with a gripsack handy, with a change in it and my door ajar.
For I suspected that the bird would take wing now...

... the wild boar in his lair, pressed tumultuously round the
great door, disfigured now and injured by the great battering
ram. But...

After replacing the rare words among all the novels, the two phrases
appear this way:
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...with a -1 -1 with a change in it and my door -1. For I -1 that
the -1 would take -1 now....

...the -1 -1 in his -1 -1 -1 round the great door, -1 now and -1 by
the great -1 -1 But...

The distance between these two phrases is about 5.08, close to the sample
mean for the “door” phrases.

The distance between the following phrases was less than 1.8, closer to the
minimum for the “door” phrases. The phrases were taken from Dr. Jekyll
and Mr. Hyde by Robert Louis Stevenson and Mr. Sponges’ Sporting Tour
by Surtees.

...inseparable friends. On the 12th, and again on the 14th, the
door was shut against the lawyer. ’The doctor was confined to
the...

...hanging out of the windows, flirting and chatting and ogling,
the door was shut, the blinds were down, the shutters closed,
and...

Most of these words are replaced with -1, which causes more matches
and a corresponding smaller distance. Also notice the common phrase “the
door was shut” in both excerpts. This explains why the “fruit” concordances
have a smaller mean: There are more rare words and fewer repeated phrases
surrounding “fruit” than surrounding “door,” causing more matches after
the rare words have been dropped.

There were 655 phrases with “fruit” as the central token and 12647
phrases with “door” as the central token. Since computing all possible pair-
wise distances among the “door” concordances would result in 159 million
values, the data were sampled to give 200326 distances computed for the
phrases centered on “door.” All

(

655
2

)

= 214185 distances centered on “fruit”
were computed. The coefficient θ was 0.8. The “rare” words were defined to
be those least-used words which accounted for a fraction of 0.25 of all tokens
from the 159 novels. These 0.25 of the tokens were accounted for by about
0.97 of the 16160 distinct words represented in the corpus.

In addition, to check the distribution of the distances for phrases centered
on different words, the central tokens were replaced with “fruitdoor” for a
randomly selected 16460 phrases from both “fruit” and “door” concordances.
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Figure 4.1: Histograms for Y11, θ = 0.8, L = 5, n = 11.
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Distances between these phrases were also computed. The histograms for the
three types of distances are shown in Figure 4.1.

The replacement of the rare words may have the following interpretation.
If no words are replaced, F will be singular, placing all its mass at high values,
since few tokens will match. If most words are replaced, the distribution
will again be singular, this time with mass close to 0, since most tokens
will match. There is a proportion of words which, if replaced, will give a
nonsingular F . There are some words authors must use frequently (e.g.,
“a,””an,” “of,” etc.). Other, rare words are more topic dependent (“taste,”
“peel,” etc.). Some words may depend weakly on the topic and appear
frequently (e.g., “through” as in through the door). Semantic information
for humans is contained both in the rare words, most of which relate to the
phrase’s topic by virtue of their presence in the phrase, and the “glue” among
those words: The common words in the phrase tell us about the relation of the
central word to other concepts. Prepositions tells us about placement with
respect to other objects (“through the door” or “piece of fruit”), specifiers
tell us whether the central word is a specific instance of an object (the door)
or an unspecified member of a class of objects (a door). Removal of the rare
words is therefore removal of important content words showing the topic at
hand, leaving words that, when matching tokens from other phrases, indicate
similarity in the relationships around the central token.

The histogram for the “fruit” concordances, surprisingly, looks normally
distributed. It does share several features with the normal distribution, in-
cluding approximate symmetry about the quartiles and rate of decay in the
tails. Kolmogorov’s D was 0.0085 for a test with a null hypothesis of nor-
mally distributed data. This value, though small, is large enough to reject
the hypothesis for such a large sample size. The deviation from normality is
due to a slight right-skew in the data. Nonetheless, the closeness to normal-
ity raises the question: Are there values of θ, L, and the number of words
replaced that will give a normally distributed Y ? The answer is not known,
but likely to be negative: In [3] and [9], it was shown that when the Xi’s in
the sum are independent, the density of Y is a polynomial spline. In [3], this
spline density resembles a normal density for some values of θ. We have no
rigorous result showing that our dependent Xi’s give a spline density for Y ,
so the statement that the data are never normally distributed is a conjecture.

The histograms for “fruit” and “door” have obvious differences in cen-
ter and shape. The histogram for “door” has a larger center and notable
right skew, whereas the histogram for “fruit” is more symmetric with a
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smaller center. This is seen when checking any relevant statistics: the sam-
ple mean for the “fruit” concordances is 4.26 while that for “door” is 5.08
(the large sample size precludes the need or relevance of mentioning that
these differences are significant). The third central moment for “fruit” is

1
214185

∑214185
i=1 (Y11,i − Ȳn)3 = −0.03 while that for “door” is -0.11.

The value of θ has an important effect on Yn. If chosen too large, i.e.
close to 1, then all words in a phrase will be weighted approximately equally,
and our sequence will not depend much more on the central tokens than the
outlying ones. On the other hand, if θ is chosen too close to 0, then Fn will
be singular, in which case we will not see a range of values with different
probabilities.

In Section 5, the following result relating θ to the the match probabilities
of the tokens will be shown: For a certain class of stationary Xi’s which take
a finite number of values with probabilities p1, ..., pm, Y = limn→∞ Yn has
a singular distribution function if the Xi’s have entropy less than log(1/θ).
This theorem was proved by Garsia [2] for independent Xi’s, and can be
generalized with a slight modification.

Let Fn,θ(x) be the distribution function of Yn for a specified θ. As the
value of θ decreases, Fn,θ will move from a nonsingular distribution placing
positive probability at high values of Yn to a singular distribution. This
fact is partly explained by Garsia’s theorem, since for a large θ, log(1/θ) is
smaller than the entropy of the Xi. On the other hand, if θ is small, the
entropy of the Xi will fall below the bound given by Garsia’s theorem, and
Fθ = limn→∞ Fn,θ will be singular. We can see log(1/θ) overcome the entropy
of Xi to give a singular distribution in the histograms shown in Figure 4.2. So
interplay between θ and the Xi gives us two competing features of the data:
To satisfy our notion that the tokens close to the center of the phrase are
more important, θ should be small, but to give Y a nonsingular distribution,
θ should be large. The value of θ for the histograms in Figure 4.1 was chosen
as a compromise between these two features.

Garsia’s theorem also tells us the histogram of Yn should become con-
centrated around a few values when the Xi’s in the sum are concentrated
on only a few of their possible values. This happens whenever the chance of
a match between phrases is either too high or too small. So replacing rare
words is necessary to increase the entropy of the Xi’s, thereby allowing Y
to have a nonsingular distribution function. There is no known converse to
Garsia’s theorem for dependent Xi, i.e., we cannot say with certainty that
higher entropy among the Xi’s will give a nonsingular distribution function
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Transition probability matrix
Fruit

0 1 2 3 4 5 6 7 8 10

0 0.265 0.388 0.258 0.075 0.010 0.004 0.000 0.000 0.000 0.000

1 0.063 0.260 0.371 0.227 0.063 0.012 0.003 0.000 0.000 0.000

2 0.013 0.107 0.275 0.338 0.202 0.049 0.013 0.001 0.002 0.000

3 0.002 0.029 0.141 0.291 0.312 0.166 0.045 0.003 0.010 0.000

4 0.000 0.005 0.051 0.172 0.302 0.284 0.144 0.017 0.021 0.003

5 0.000 0.001 0.010 0.072 0.204 0.320 0.261 0.078 0.045 0.010

6 0.000 0.000 0.003 0.021 0.104 0.239 0.341 0.169 0.094 0.029

7 0.000 0.000 0.000 0.002 0.017 0.131 0.290 0.330 0.140 0.090

8 0.000 0.000 0.001 0.010 0.032 0.083 0.194 0.135 0.409 0.136

10 0.000 0.000 0.000 0.000 0.006 0.025 0.079 0.135 0.206 0.548

Table 4.1: The estimated one-step transition probability matrix for the Xi’s
in the “fruit” distances. Notice that for L = 5, Xi cannot be 9.

Stationary distribution
Fruit

0 1 2 3 4 5 6 7 8 10
0.002 0.011 0.037 0.086 0.149 0.199 0.212 0.0.118 0.110 0.076

Door
0.00002 0.00050 0.00364 0.0297 0.07968 0.15592 0.44081 0.27492 0.60123 0.58096

Table 4.2: The estimated stationary distribution for the transition proba-
bility matrix of the Xi’s. The entropies for the two distribution are 2.020
and 1.934 respectively, both greater than log(1/θ) = 0.223, the bound below
which Y has a singular distribution function according to Corollary 5.0.2

for Y . We are speculating on the basis of empirical evidence.

To compare the entropy of the Xi’s to log(1/θ), the one-step transition
probability matrix for the Xi’s was computed for the “fruit” concordances
and is shown in Table 4.1. There is criticism in the linguistic community of
the appropriateness of Markov chains as models for human language [4], but
they are regarded as a useful model in some cases. Viewing our sequence as
a Markov chain, Table 4.2 shows the estimated stationary distributions for
the Xi’s in the “fruit” and “door” concordances. The estimated entropies of
the Xi’s were 2.020 and 1.93 for “fruit” and “door” respectively, both well
above the lower bound of log(1/θ) = 0.223 given by Garsia’s theorem.

There is a concrete relationship between he higher entropy of the Xi’s
in for the “fruit” concordances, the greater scatter in its histogram, and
our scheme of replacing rare words. Table 4.3 shows the breakdown of re-
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Proportion of matches by replacement
“Fruit” “Door”

Match Non-match Match Non-match
Replaced 0.319 0.031 0.176 0.056
Not replaced 0.111 0.538 0.139 0.629

Table 4.3: The proportion of non-matching words was lower among “fruit”
concordances than “door” concordances. This resulted in higher average
distances between “door” concordances, as shown in Figure 4.1

placements by matching. The higher entropy for the terms of the “fruit”
concordances results from there being more tokens replaced in these phrases
than in the “door” phrases. This causes more matches among the Xi for the
“fruit” concordances, which raises their entropy and in turn causes a wider
spread in the distribution of the Yn. Also notice that more matches in the
“fruit” phrases gives them a lower mean distance than that of the “door”
phrases.

The fact that there are more replaced values in the “fruit” concordances
than in the “door” concordances tells us the word “fruit” is often surrounded
by rare words more often than is the word “door.” So the difference in the
distribution functions is caused at least partly by a richer variety of context
words for “fruit” than for “door.”

Do the resulting probability distributions relate to semantics in the phrases?
Or have the semantic features of the phrases been erased during replacement
of rare words, leaving a set of random variables that have little to do with the
language? The answer to this question tells us whether the method allows
us to see semantic similarity of words, or only to study an interesting, but
semantically irrelevant, aspect of the randomness of language.

Though these are philosophical questions, a view of the match types sug-
gests both are partly true. Certainly if too many words are replaced, almost
all matches will occur because of the replaced words, erasing the effect of
semantic similarity. But in the example, 0.111/(.111+.319) = .258 of the
matches for the “fruit” concordances were made with non-replaced words, so
much of the similarity between phrases is accounted for by matching among
the original tokens. Though replacing rare words removes some or most
original meaning, it does not remove all of it.

The third histogram in Figure 4.1 shows another interesting feature of the
data. This histogram was created by replacing the words “fruit” and “door”
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with the artificial word “fruitdoor,” and measuring the distances between
the two types of phrases. Since the middle words of any pair now match
because of the bogus word “fruitdoor,” we can see how the distance function
behaves when comparing the contexts of two different words. This method is
used to test word-sense disambiguation methods [4]. One might hope that,
for distances measured between phrases with different central tokens, the
distribution of the Yn would differ from a distribution of Yn between phrases
with identical central tokens. If they were different, we could detect this
difference by examining the distribution function of the distances between
the two types of phrases. One manifestation of this difference in distributions
we might hope for is a higher mean of the distribution containing phrases of
mixed type. The third histogram shows a distribution that is different from
the other two, but its mean is not higher than both. Let Ȳf be the sample
mean for the “fruit” distances and Ȳd be the sample mean for the “door”
distances. The sample mean for the “fruitdoor” distances was 4.91, slightly
larger than .5(Ȳf + Ȳd). Nevertheless, this distribution does differ from both
the “fruit” and “door” distributions, which could be caused by a semantic
difference between the two words via their different contextual words. There
is no doubt that much of the difference in distribution is caused by more
replacements in the “fruit” phrases. The question of whether this indicates
different meanings between the two words depends what we mean by “mean,”
and that question is still debated.
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Chapter 5

Garsia’s Theorem

This section presents a theorem stating sufficient conditions under which
the distribution of Y = limn→∞ Yn is singular. The theorem was proved for
independent random variables by Garsia [2]. Let Zn = Y −Yn, and let Fn(x)
be the distribution function of Yn. Lemma 5.0.1, coupled with the lack of
assumed independence of the Xi’s in Lemma 5.0.3, allows us to generalize
Garsia’s main theorem to include a class of Xi’s which are stationary and
ergodic. Unlike the definition of Yn in Section 3, in this section assume Yn is a
one-sided sequence with initial value Y0 chosen from a stationary distribution.

Garsia’s theorem gives a sufficient condition for the singularity of F (x).
Unfortunately, there is no known necessary condition for stationary Xi. Re-
search toward this result lies in the field of Bernoulli convolutions [6]. There
are some known circumstances in which Y has a density when the Xi’s are
independent [9],[3],[7], but our Xi’s are dependent. Despite the lack of a
necessary condition, knowing when the data cannot have a density function
is instructive when choosing the number of words to replace to produce the
Yn.

For completeness, the proofs of all of Garsia’s original theorems which
rely on Lemma 5.0.1 are reproduced here.

Lemma 5.0.1 Let Zn = Y − Yn. For any x, y > 0,

Fn(x + y) − Fn(x) ≤ 2 [F (x + 2y) − F (x − y)] .

Proof: First notice

Pr {x < Yn < x + y, |Zn| ≤ y} ≤ Pr {x − y < Y ≤ x + 2y} (5.1)
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Since Yn takes values on a finite set,

Pr {x < Yn ≤ x + y, |Zn| ≤ y} = (5.2)
∑

xi∈(x,x+y]

Pr(Yn = xi) Pr(|Zn| ≤ y|Yn = xi)

where the xi’s in the sum denote possible values of Yn in the interval (x, x+y].
If n is large enough, because θ < 1 and Yn is ergodic, takes values on a finite
set and |Zn| → 0, we must have s = infi {Pr(|Zn| ≤ y|Yn = xi)} > 0, so using
5.2

Pr {x < Yn ≤ x + y, |Zn| ≤ y}

=
∑

xi∈(x,x+y]

Pr(Yn = xi) Pr(|Zn| ≤ y|Yn = xi)

≥ s[Fn(x + y) − Fn(x)] (5.3)

Eventually, E(Z2
n)/y2 < 1/2, so using the Chebycheff inequality and the

definition of s, we see

Pr(|Zn| > y) ≤
E(Z2

n)

y2
< 1/2 ⇒

1

s
< 2.

Combining this, 5.1 and 5.3, we have

Fn(x + y) − Fn(x) ≤ 2 [F (x + 2y) − F (x − y)] .2

The following theorems are modified versions of those proved by Garsia.
Their proofs have been modified to account for our stationary Xi’s.

Lemma 5.0.2 (Garsia [1]) If yn is any sequence decreasing to 0, then F (x)
has a singularity only if the following condition is satisfied:

Condition S. There exists a γ > 0 such that for any integer n0 and ǫ > 0,
there is a set of integers S such that for some n > n0,

∑

k∈S

[Fn(kyn + yn) − Fn(kyn)] > γ (5.4)

|S| ≤ ǫ/yn (5.5)
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On the other hand, if yn → 0 slowly enough that

lim inf
n→∞

y2
n/E(Z2

n) > 0 (5.6)

lim inf
n→∞

inf
xi

{Pr(|Zn| < yn|Yn = xi)} > 0 (5.7)

then condition S sufficient to guarantee the singularity of F (x).

Proof: If F (x) is singular, there exists a γ > 0 such that for any ǫ there is
a disjoint finite union of open intervals I = ∪i(ai, bi) such that

∫

I
dF (x) > γ,

∑

i(bi−ai) < ǫ. Since F (x) is a uniform limit of Fn(x) (by Scheffe’s Theorem),
if we define ka

i,n = sup{k : kyn ≤ ai} and kb
i,n = inf{k : kyn ≥ bi} we have

ka
i,nyn → ai and kb

i,nyn → bi. Therefore, when n is large enough, the intervals
(ka

i,nyn, k
b
i,nyn) are disjoint and if we let S = ∪i{k : ka

i,n ≤ k ≤ kb
i,n − 1}, (5.4)

follows and ǫ >
∑

i(bi − ai) >
∑

i∈S(kyn + yn) − kyn = |S|yn gives (5.5).

Suppose now condition S is satisfied and that (5.6) is true. Then we may
assume there is an integer m such that m2y2

n ≥ 2E(Z2
n). If (5.7) is true, by

Lemma 5.0.1, for any x,

Fn(x + myn) − Fn(x) ≤ 2[F (x + 2myn) − F (x − myn)] (5.8)

Given a set S of integers satisfying condition S, define S−m, S−m+1, ..., S2m

by setting Sj = {p : k + j = p, k ∈ S}. From (5.4) and (5.8) we have

γ <
∑

k∈S

[Fn(kyn + myn) − Fn(kyn)]

≤ 2
∑

k∈S

[F (kyn + 2myn) − F (kyn − myn)]

= 2
∑

k∈S

[F ((k + 2m − 1)yn + yn) − F ((k + 2m − 1)yn)

+F ((k + 2m − 2)yn + yn) − F ((k + 2m − 2)yn)

...

+F ((k − m)yn + yn) − F ((k − m)yn)]

≤ 2

2m
∑

j=−m

∑

i∈Sj

[F (iyn + yn) − F (iyn)]
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This implies that for at least one j we have
∑

k∈Sj [F (k) − F (kyn) > γ/6m.
Because of (5.5) we have

∑

k∈Sj

yn < ǫ

which implies F (x) is not absolutely continuous with respect to Lebesgue
measure. 2

Corollary 5.0.1 (Garsia [2]) If yn tends to 0 slowly enough that

lim inf
n→∞

y2
n/E(Z2

n) > 0 (5.9)

lim inf
n→∞

inf
xi

{Pr(|Zn| < yn|Yn = xi)} > 0 (5.10)

then a necessary and sufficient condition for the singularity of F (x) is that
for an M so large that the quantity

λn =
∑

|kyn|≤M

[Fn(kyn + yn) − Fn(kyn)] (5.11)

is bounded away from 0, the probability distributions

Sn =

{

Fn(kyn + yn) − Fn(kyn)

λn
: |kyn| ≤ M

}

(5.12)

form a singular sequence.

Proof: If (5.11) implies (5.12), then both statements of condition S in
Lemma 5.0.2 are satisfied by choosing S to be a small subset of {k : |kyn| ≤
M} when M is large enough. Lemma 5.0.2 then implies the singularity of
F (x). Conversely, if F (x) is singular, then condition S in Lemma 5.0.2 is
satisfied, and {k : |kyn| ≤ M} will contain the set S eventually if M >
supi k

b
i,n, where kb

i,n is defined in the proof of Lemma 5.0.2. This gives a
non-empty subset of singular elements of Sn whenever n > M and (5.11) is
true. 2

The next lemma does not rest on the assumption of independence, hence
requires no modification to apply to our situation. See [1] for a proof.

Lemma 5.0.3 (Garsia [1]) Let Rn be the set of possible values of Yn. F (x)
is singular unless

lim
n→∞

−

∑

i∈Rn
pn(i) log pn(i)

log |Rn|
= 1
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Theorem 5.0.1 (Garsia [2]) If {yn} is a sequence of positive numbers tend-
ing to 0 such that

lim inf
n→∞

y2
n/E(Z2

n) > 0 (5.13)

lim inf
n→∞

inf
xi

{Pr(|Zn| < yn|Yn = xi)} > 0. (5.14)

If

lim inf
n→∞

H1 + H2 + ... + Hn

log(1/yn)
< 1 (5.15)

Then F (x) is singular.

Proof: Assume (5.13), (5.14) and (5.15) are true. Let Ω be the measure
space where Yn and Y are defined as the product of the measure spaces
Ω1, Ω2, ..., Ωn where the Xi’s are defined. The equivalence relation

ω′′ ∼ ω′ if and only if Xi(ω
′) = Xi(ω

′′), i = 1, ..., n

generates a partition which is finer than the partition generated by the rela-
tion

ω′′ ∼ ω′ if and only if Yn(ω′) = Yn(ω′′), i = 1, ..., n (5.16)

Let Dn be the entropy of the distribution of Yn. By the properties of entropy,

Dn ≤ H1 + H2 + H3 + ... + Hn (5.17)

Suppose Yn takes values yn,1, yn,2, ..., yn,N(n) with probabilities

pn(1), pn(2), ..., pn(N(n)).

For a given integer M , partition the indices 1, 2, ..., N(n) into two sets
S ′ and S ′′ as follows: S ′ is the set of all i such that yn,i ≤ M and S ′′ the
complement. Let

Q′
n =

∑

i∈S′

pn(i)

D′
n = −

∑

i∈S′

pn(i)

Q′
i

log
pn(i)

Q′
i

Q′′
n =

∑

i∈S′′

pn(i)
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D′
n = −

∑

i∈S′′

pn(i)

Q′′
i

log
pn(i)

Q′′
i

.

Then
Q′

nD
′
n + Q′′

nD
′′
n = Dn + Q′

n log Q′
n + Q′′

n log Q′′
n ≤ Dn (5.18)

When M is sufficiently large, since E(Y 2) < ∞, we can guarantee that Q′
n

remains arbitrarily close to 1. Since D′′
n ≥ 0, by (5.17), (5.18) and (5.15), we

can choose M large enough that

lim inf
D′

n

log(1/yn)
< 1. (5.19)

On {ω ∈ Ω : Yn ≤ M}, define a partition by the equivalence relation ω1 ∼ ω2

if and only if Yn(ω1) and Yn(ω2) belong to the same interval [kyn + yn, kyn).
Since this partition is coarser than the one induced by (5.16), the entropy
E ′

n for this partition must satisfy

E ′
n ≤ D′

n. (5.20)

Let λn is defined as in (5.11), and let

En = −
∑

|kyn|≤M

[

Fn(kyn + yn) − Fn(kyn)

λn
log

(

Fn(kyn + yn) − Fn(kyn)

λn

)]

,

(5.21)
then E ′

n ≈ En. Combining this relation with (5.19) gives

lim inf
En

log(1/yn)
< 1.

Lemma 5.0.3 then implies

{

Fn(kyn + yn) − Fn(kyn)

λn

}

forms a singular sequence, so Corollary 5.0.1 implies the singularity of F (x).
2

Corollary 5.0.2 (Garsia [2]) Assume the Xi are stationary and ergodic,
and Y0 is drawn from a stationary distribution. If the entropy of the Xi’s is
less than log(1/θ), F (x) is singular.



29

Proof: Let yn = θn in Theorem 5.0.1. Since E(Z2
n) < θ2n/(1 − θ)2,

lim inf
n→∞

y2
n/E(Z2

n) ≥
θ2n

θ2n+2/(1 − θ)2
> 0

so assumption (5.13) of Theorem 5.0.1 is met. The stationarity and ergodicity
of the Xi gives infxi

Pr(|Zn| < yn|Yn = xi) = Pr(|Z0| < 1|Y0 = xi) > α for
some positive constant α, so assumption (5.14) of Theorem 5.0.1 is met, and
F (x) is singular. 2
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Chapter 6

Conclusion

The distance Yn presented in this paper provides an interesting view of the
statistical behavior of KWIC concordances. The data suggest it can be
formed so as to have a continuous limiting distribution. The generalized
version of Garsia’s theorem gives a sufficient condition for the singularity of
this limiting distribution. Yn provides some insight into the similarity of the
uses of words by showing relationships among their context words.

A higher match rate among the unaltered tokens would raise the entropy
of the Xi, thereby reducing the proportion of replaced words necessary to
give a nonsingular F . A method which allows partial matching could be
employed to this end. The match rate for verbs could be increased by allowing
partial matching between two tokens if those tokens have the same infinitive
and match either tense or conjugation, i.e. “has” and “had” have the same
infinitive (“to have”), but different tenses. Also, pronouns could be divided
among first, second and third person subjective and objective cases, giving
partial matches among words such as “they” and “them” or “her” and “me.”
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Appendix A

Novels

A Christmas Carol A Double-Barrel Detective Story
A Portrait of the Artist as a Young Man A Sentimental Journey through France and Italy
A Study in Scarlet Alice’s Adventure in Wonderland
American Notes An Old Fashioned Girl
Anna Karenina Around the World in 80 Days
Barchester Towers Barnaby Rudge
Billy Budd Black Beauty
Bleak House Brave New World
Bruno’s Revenge and other Stories Confessions of an English Opium-Eater
Crime and Punishment David Copperfield
Dead Souls Dombey and Son
Dr. Jekyll and Mr. Hyde Dracula
Dubliners Eight Cousins
Emma Erewhon
Far from the Madding Crowd Frankenstein
Good Wives Great Expectations
Guide to Fiction Gulliver’s Travels
Hard Times His Last Bow
Huckleberry Finn Ivanhoe
Jane Eyre Joseph Andrews
Jude the Obscure Kidnapped
Kim King Solomon’s Mines
Lady Chatterleys Lover Lady Susan
Lavengro Little Dorrit
Little Women Lord Jim
Lorna Doone Madame Bovary
Mansfield Park Martin Chuzzlewit
Martin Eden Middle March
Mill on the Floss Moby Dick
Moll Flanders Moonfleet
Moonstone Mr. Midshipman Easy
Mr Sponges Sporting Tour Nicholas Nickleby
Northanger Abbey Nostromo
Notre-Dame de Paris Of Human Bondage
Oliver Twist Omoo
Our Mutual Friend Persuasion
Peter Pan Peter Pan in Kensington Gardens
Phantom of the Opera Pollyanna
Pride and Prejudice Prince Otto
Rob Roy Robinson Crusoe
Sense and Sensibility She
Shirley Silas Marner
Sons and Lovers Stalky and Company
Stories from the Bible Sylvie and Bruno
Sylvie and Bruno Concluded Tale of Two Cities
Tales from Shakespeare Tales of Mystery and Imagination
Tess of the d’Urbervilles The Adventures of Sherlock Holmes
The Adventures of Tom Sawyer The Age of Innocence
The Aspern Papers
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The Brothers Karamazov The Call of the Wild
The Castle of Otranto The Dynamiter
The Expedition of Humphry Clinker The Heart of Darkness
The History of Rasselas Prince of Abyssinia The Hound of the Baskervilles
The Jungle Book The Last of the Mohicans
The Life and Opinions of Tristram Shandy Gent The Man Upstairs
The Mayor of Casterbridge The Memoirs of Sherlock Holmes
The Old Curiosity Shop The Pickwick Papers
The Picture of Dorian Gray The Pilgrims Progress
The Portrait of a Lady The Prairie
The Prisoner of Zenda The Rainbow
The Red Badge of Courage The Scarlet Letter
The Scarlet Pimpernel The Sea-Wolf
The Secret Agent The Sign of Four
The Tenant of Wildfell Hall The Three Musketeers
The Turn of the Screw The Valley of Fear
The Vicar of Wakefield The Virginian
The Warden The Water Babies
The Way of All Flesh The Werewolf
The Woman in White Three Men in a Boat
Through the Looking Glass Tom Browns School Days
Tom Jones Tommy and Co.
Treasure Island Typee
Ulysses Uncle Toms Cabin
Under Western Eyes Valperga
Vanity Fair Vathek an Arabian Tale
Villette War and Peace
Washington Square Westward Ho!
What Katy Did Next White Fang
Wives and Daughters Women in Love
Wuthering Heights
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Appendix B

Source Code

The entire source code may be downloaded as http://lisp-p.org/conc/conc.cpio.bz2
or as a tar-ball from http://lisp-p.org/conc/conc.tar.gz.

The individual source code files may be browsed at http://lisp-p.org/conc/src/.
The files are:

permissions links size (octets) modification time filename
-rw-r–r– 1 1778900 Oct 3 15:24 concordances.lisp
-rw-r–r– 1 157517 Oct 3 15:24 concordances.txt
-rw-r–r– 1 2287 Oct 3 15:24 dependence.pl
-rw-r–r– 1 1020 Oct 3 15:24 door by corpus.pl
-rw-r–r– 1 975 Oct 3 15:24 door r macro.pl
-rw-r–r– 1 1413 Oct 3 15:24 fixlisp.pl
-rw-r–r– 1 947 Oct 3 15:24 fruitdoor r macro.pl
-rw-r–r– 1 978 Oct 3 15:24 fruit r macro.pl
-rw-r–r– 1 3819 Oct 3 15:24 get-concordance.pl
-rw-r–r– 1 992 Oct 3 15:24 get-concordances.sh
-rw-r–r– 1 2947 Oct 3 15:24 get-sentences.pl
-rw-r–r– 1 7371 Oct 3 15:24 process-data.pl
-rw-r–r– 1 1450 Oct 3 15:24 p-val-hash.pl
-rw-r–r– 1 1121 Oct 3 15:24 r macro.pl
-rw-r–r– 1 1046 Oct 3 15:24 runit.sh
-rw-r–r– 1 1340 Oct 3 15:24 sample.pl
-rw-r–r– 1 1190578 Oct 3 15:24 wordhash pvalues.lisp
-rw-r–r– 1 19665 Oct 3 15:24 wordsense.lisp
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Appendix C

Change Log

2004-Oct-17 Finally, Figure 4.1 looks right. I’m not convinced it’ll look
right everywhere, so I added a fail-safe comment to the caption that
directs the human reader to download the PNG or Post Script files if
the figure appears incorrect. This figure was a real pain in the ass.
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Appendix D

Other File Formats

• This document is available in multi-file HTML format at http://lisp-
p.org/conc/.

• This document is available in PostScript format at http://lisp-p.org/conc/conc.ps.
(It’s easy to print PostScript files, even from Microsloth Winders. [?,
gms:psw]
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