
Pathnames Quick-Start & Quick-Reference

Gene Michael Stover

created Sunday, 2002 September 1

updated Wednesday, 2005 February 2

2

Copyright c© 2002, 2003, 2004, 2005 Gene Michael Stover. All rights reserved.

Permission to copy, store, & view this document unmodified & in its entirety is granted.

Contents

1 Introduction 5

2 New Stuff 7

2.1 Logical Pathnames & Current Directories 7
2.2 block of new text . 7

3 Heuristics 9

4 Concepts 11

5 Before Pathnames 13

6 Where Pathnames Come From 15

7 Portability Tips 17

7.1 Character Case . 17
7.1.1 Got an Example? . 18
7.1.2 Why Does :common Exist? 18

7.2 Case & Namestrings from Users 19
7.3 Miscellaneous . 19
7.4 Bad Examples . 19

8 Logical Pathnames 21

9 Common Tasks 23

9.1 Loading the Logical Pathname Translations 23
9.1.1 Hard-Coded Translation In Your Program 23
9.1.2 Loading Translations from Another File 23

9.2 Logical Pathname Miscellaneous Things 25
9.3 Namestring to Pathname . 25
9.4 Validating Namestring Input . 25
9.5 Finding Your Program’s Configuration File 25

9.5.1 Per-User . 25
9.5.2 System-Wide . 26

9.6 Computing One Pathname from Another 26

3

4 CONTENTS

9.7 Obtaining a Portable Namestring from a Pathname 29

10 Example Code 31

10.1 The Current Directory . 31
10.1.1 Example . 31

10.2 Directory Traversal . 35

11 Quirks & Gotchas 37

11.1 clisp’s directory function . 37

12 The Value of Portability 39

13 Blue Sky Dreaming 41

14 Other Documentation 43

15 Other Formats of this Document 45

16 Unresolved Thoughts 47

Chapter 1

Introduction

The Steele book ([Ste90,)] & the Common Lisp Hyperspec ([X3J,)] contain
reference material, but pathnames look complex enough that the prospect of
getting your head wrapped around them might be intimidating.

It may be complex in its details, but Common Lisp’s file system interface is
simple to use in practice. Pathnames & the file system interface aren’t difficult to
use, but it’d be handy to have an alternative discussion of them in a format that’s
appropriate for people to display in a browser window next to their edit windows
while they write file-handling Lisp expressions. That’s what I’ve attempted to
capture here.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

New Stuff

2.1 Logical Pathnames & Current Directories

Need to do some research on this to verify it, then add the results to the rest of

the document.

Lisps don’t always take the operating system’s notion of current directory
into account in the same way when they convert logical pathnames to native
pathnames.

The cases I’ve seen are clisp & SBCL. When clisp converts a logical pathname
to a native pathname, the native pathname can be relative to the operating
system’s current directory, but SBCL always converts to an absolute native
pathname.

2.2 block of new text

I need to integrate the following with the rest of this article.

A really good article that has a lot to do with pathnames is “Fight the Sys-
tem”1, by Henrik Motakef. It’s about defsystem, not exactly about pathnames,
but the topics overlap, & the article talks about conventions in logical pathname
hostnames. As of 28 May 2003, it’s unfinished, but it’s still really good. I can’t
recommend it fervently enough.

When one Lisp program needs to load another, it looks like a good convention
might be to use the logical hostname CL-LIBRARY & then a string of logical di-
rectories to mimick the library’s originator & enclosing packages. For example,
if a library wants to load the Acme company’s network performance library, it
might use the logical pathname cl-library:acme;network;performance.lisp.

This resembles the package naming system recommended by Java.2 I haven’t

1http://www.henrik-motakef.de/defsystem.html
2At least it was recommended by Java in about 1997. I haven’t kept up-to-date with that

language of weekly paradigm changes & endless remora technologies, so it might not still be
the Java convention.

7

8 CHAPTER 2. NEW STUFF

seen this convention mentioned in Lisp literature, but it would make sense to
me.

The installation instructions for a library should list all the logical pathnames
the library uses to load other Lisp packages. It should provide suggestions &
examples for creating the logical-to-true pathname maps.

Most importantly, a library should recommend the logical pathnames that
should be used to load it. Authors of other software which relies on the library
should use those recommended logical pathnames when they load the library. I
believe that recommending pathnames & following those recommendations are
as important as any other factor in making Lisp libraries that are conveniently
& realistically re-usable by other Lisp software.

Chapter 3

Heuristics

Here’s a list of the rules of thumb I recommend with links to the rationales.

1. Namestrings obtained from users are literals. Use them as-is to operate on
files, or convert them to pathnames with parse-namestring. (Section 6)

2. Do not hard-code a full pathname unless it’s a logical pathname.

3. When you hard-code components of a non-logical pathname, use local case,
but remember that some file systems are not case-sensitive. (Section 7.1)

9

10 CHAPTER 3. HEURISTICS

Chapter 4

Concepts

Instances of the Pathnames class identify sets of files. A pathname might
identify (or locate) exactly one file, multiple files, or no file. Same goes for
namestrings, which hold about the same information that pathnames do, but
in a string, whereas a pathname is an object with attributes.

Pathnames also have a portable, platform-independant programmatic inter-
face. Some examples of the functions in that API are the pathname, make-pathname,
pathname-name, & merge-pathnames functions.

Though pathnames have a portable interface, their values are not portable.
It’s important to understand this. The programmatic interface to pathnames is
portable, but their values aren’t.

Because the values of pathnames are not portable, it is not safe to hard-code
any namestring values unless they are logical namestrings.1 It can be portable
to hard-code some individual components of pathnames . . . if you’re very, very
careful.

That’s where logical pathnames & namestrings come in. They have portable
values, compliments of a set of logical pathname translations which are set during
the installation & configuration process.

1The documentation calls them “logical pathname namestrings”, but I think the “path-
name” in that term is reduntant or even conflicting, so I prefer to leave it out. Hope that
doesn’t bother anyone.

11

12 CHAPTER 4. CONCEPTS

Chapter 5

Before Pathnames

You can do a lot of file-system manipulation without any explicit use of path-
names because the file-system interface functions, such as open & probe-file,
can operate on strings. Such a string is called a namestring.

So when your program reads a namestring as input & just needs to open the
file, it can use the namestring without any concern for pathnames or related
functions.

You only need to deal with pathnames when you parse namestrings or ma-
nipulate pathnames. The point of pathnames is to provide an interface for
manipulating files that is independant of the file system’s type. Logical path-
name namestrings also provide an interface that is independent of the actual
file system.

13

14 CHAPTER 5. BEFORE PATHNAMES

Chapter 6

Where Pathnames Come

From

A pathname is an object that a Lisp program can manipulate internally. It’s
useful to think about how pathnames get into a program.

One way is for a user or other external entity to give the program a string,
which would be a namestring. Users always enter platform-specific namestrings;
they don’t care about Lisp’s notion of common case or logical pathnames.1

To convert a user-supplied namestring to a pathname, a program should use
parse-namestring.

When your program prints a pathname for a user, the user wants to see
the pathname expressed in the conventions of the local system, so to convert a
pathname to a string for the user to see, use the namestring function.

Another way for a pathname to get into a program is from the programmer.
(That would be you.) The programmer does not know the details of the target
platform, so she must enter them in a portable way. There are three main ways
for a programmer to specify a pathname portably. They are:

1. Construct them from literal component values.2 (Section 7.1)

2. Construct them from logical component values.

3. Use logical namestrings.

The third way for a pathname to get into a program is to generate it from
one or more other pathnames by merging or altering them.

1If you do your job right, a user doesn’t need to know your program is written in Lisp.
2“Literal component values” might not be a very good term for that. More thought is

necessary.

15

16 CHAPTER 6. WHERE PATHNAMES COME FROM

Chapter 7

Portability Tips

7.1 Character Case

You’d think you could use “:case :common” to achieve portability where char-
acter case is concerned. You can, but it’s easier & no less portable to use lower,
local case (“:case :local”). Let me explain.

When you tell make-pathname & friends that a string is in local case, it
must convert the values so that the local file system can deal with them1, so
lower-case values should work on a file system if no other reason prevents them
from working.

Lower-case values are easier to type than the upper-case values required for
customary case of common case, & you don’t need to remember to use “:case
:common” when you call functions to manipulate the values.

I’m pretty sure the the only time lower, local case fails is when a file system
preserves case but it’s customary case is upper. When both those conditions are
true about a file system, & you hard-code a lower-case component, it’ll still work
technically, but if you print the pathname (after conversion to a namestring) for
a user, it’ll be lower-case, which might be a mild surprise to the user.

The only other gotcha about using lower-case pathname components is that
a case-sensitive string comparisons could erroneously indicate a difference on
file systems where the customary case is upper-case, but you shouldn’t compare
pathnames, namestrings, or their components as strings anyway. Compare them
with equal; it will perform a comparison that is appropriate for the file system.

Here’s why lower-case works in practice:

1. On a file system that supports only upper-case, the lower-case pathname
will be converted to upper-case.

2. On a case-sensitive, case-preserving file system, the lower-case will be
preserved, & most (all?) case-sensitive file systems prefer lower-case.

1Page 618 in [Ste90]. Section 19.2.2.1.2.1 of [X3J].

17

18 CHAPTER 7. PORTABILITY TIPS

3. Finally, on a case-insensitive, case-preserving file system (Macintosh or
MS-DOS 95 & later), the case will be preserved & won’t conflict too much
with the mixed-case conventions of those file systems.

Mixed-case can be safe if you are careful to ensure:

1. that all pathnames which should be equal have the same case (so it works
correctly on case-sensitive file systems) &

2. that any two pathnames which should not be equal differ in some way
other than just case (so it works correctly on file systems that ignore case).

If you can ensure those two rules, I think it’s safe to use mixed-case.

7.1.1 Got an Example?

Yup.
You could do this:

> (make-pathname :name "DOWAH" :type "LISP" :case :common)

but I claim that it’s easier, equivalent, & no less portable to do this:

> (make-pathname :name "dowah" :type "lisp")

Mixed case has the same result whether you use :common case or :local

case, so you might as well use local case.

7.1.2 Why Does :common Exist?

Common case exists to convert from local case on one host, to a common case,
& then to local case on another file system2.

How often does that happen? Answer: Not bloody often. I can’t even think
of an example that isn’t at least a little contrived. For starters, any pathname
that has more components than just a name & a type is likely to be very non-
portable. Lots of Unix file systems have a file called /etc/passwd, but it’s a
dying trend, & I presume that almost no MS-DOS or Macintosh systems have a
file with that name. So what would it mean to move /etc/passwd to a Twenex
or a Mac? Even if you are on another Unix system, do you have a /home/gene

directory? And what if a pathname contains something seriously non-portable,
like a host or a device? Those are unlikely to be portable even between file
systems of the same type.

For translating names of files from one file system to another, :common case
could be useful, but how often does that happen?

Remember that if you are hard-coding a file name, you don’t need :common

case at all. It won’t buy you anything. If you hard-code a lower-case file-
name, then you’d hard-code an upper-case filename (& remember the :case

2Page 617 in [Ste90].

7.2. CASE & NAMESTRINGS FROM USERS 19

:common). If you have a mixed-case string, you’d still have a mixed-case string
with :common case. Hard-coding a filename is not the same as translating from
one local representation to another.

I don’t doubt that there are uses for :common case, but they must be few &
far between.

7.2 Case & Namestrings from Users

When a user enters a namestring, it already uses the customary case of the file
system. Do not force it to upper-case or lower-case. Don’t do any other edit on
it, for that matter. Parse it into a pathname or use it to open (or probe or copy
or whatever) files as-is.

7.3 Miscellaneous

Use the :newest keyword for file versions whenever possible. Use it unless you
know you need a specific version & you know that the file system supports
versions. Prefer :newest to :unspecific.

Assume that Lisp source files have a type of LISP. (Fixme: This conflicts
with the advice in (Section 7.1).)

Do not use a logical host name of SYS. Unless I need more than one logical
host name (which is rare), I use a single logical hostname of HOST.

For maximum portability, the only pathnames or namestrings you should
hard-code are logical pathnames or logical namestrings. Anything else reduces
portability, though notice that there are a few cases in which I have not figured
out how to do it without hard-coded a non-logical pathname or namestring.

7.4 Bad Examples

Don’t do these things! These are examples of what not to do.
In particular, don’t hard-code an expression such as “(make-pathname :host

"abacus" :device "C" :directory ’(:absolute "My Documents" "werther-project")

:name "wlskdjaeks" :type "doc")”. Don’t be fooled into thinking that is
portable because the make-pathname function is portable. In fact, this example
demonstrates the difference between Common Lisp’s portable programmatic in-
terface to the file system & the non-portable nature of the values of pathnames
& namestrings.

Also in that one example, notice the two ways in which the pathname’s value
can be computer-specific. First, it can depend on the file system’s type. That ex-
pression can probably be processed just fine by any Common Lisp implementa-
tion on MS-DOS. Any such implementation will probably produce the pathname
equivalent of “//ABACUS/C$/My Documents/werther-project/wlskdjaeks.doc”,
but a Common Lisp on another type of file system might be confused, espe-
cially by the device name. The second un-portable feature of that pathname

20 CHAPTER 7. PORTABILITY TIPS

affects even other MS-DOS file systems because they might not be on a net-
work with a host named ABACUS, & that host might not have a directory
called werther-projects containing a file called wlskdjaeks.doc. There are
two types of portability where file systems are concerned, that of file system’s
type & that of file system itself.

Chapter 8

Logical Pathnames

The idea behind logical pathnames is that your program can hard-code them,
manipulate them within a virtual file system which you have designed to be con-
venient for your program’s purposes, but they are translated to pathnames for
the actual file system. The translations are created by the human (or program)
which installs & configures your program.

You design the logical file system for the convenience of your program. For
example, if you are writing a mail program, you might want to plan for installa-
tions in which incoming mail is stored on one host, outgoing mail is sent through
another host, & user home directories are on yet another host. So you might
put three logical host names in the logical file system for your program: MAIL,
SMTP, & HOMES. Your program will still work just fine on an installation that
doesn’t use three different hosts for all those tasks. You’ve simply prepared for
the three-host contingency.

When your program is installed, the installation tool might present its human
operator with a list of the important features of the logical file system. Those
features would include hosts, notable directories, & file types. The installation
program might also include notes & suggestions about what translations need
defining. The human operator would create the translations & save them.

When your program runs, it loads the translations. You’ve hard-coded some
logical pathnames & logical namestrings, which your program translates to ac-
tual pathnames. It might also read literal namestrings from the user. It can
manipulate the literal pathnames, merge them, construct new ones, whatever.
If done carefully, it can be done portably.

21

22 CHAPTER 8. LOGICAL PATHNAMES

Chapter 9

Common Tasks

9.1 Loading the Logical Pathname Translations

Your program must load the logical pathname translations. I know of two
techniques: They are hard-coded into your program, or your program loads
them from a file.

In both cases, the installation program collects the translations from its
human operator, & then it writes the translations. The difference is only in the
location where the installation program writes the translations.

9.1.1 Hard-Coded Translation In Your Program

The installation program might hard-code the translations into your Lisp pro-
gram. This could work well if you use a short Lisp file to load the rest of your
program. The installation program could write that loader file, & it could hard-
code the translations into the beginning of the file. Figure 9.1 shows an example
of a Lisp “loader” file like this.

9.1.2 Loading Translations from Another File

I still assume you’re using a loader file to load the rest of your program. Instead
of hard-coding the logical pathname translations into the loader file, the instal-
lation program could hard-code them into another file, & the loader file could
load that translations file.

The problem with this technique is that the installation program must hard-
code a local namestring to load the file of translations. It’s a chicken-&-egg
problem.

23

24 CHAPTER 9. COMMON TASKS

;;;

;;; The example logical file system has three hosts:

;;; MAIL, where e-mail is kept,

;;; USERS, where user home directories are kept, &

;;; HOST, where the rest of this Lisp program is kept.

;;;

;;; The translations here might be suitable for some

;;; Unix system.

;;;

(setf (logical-pathname-translations "MAIL")

’(("*.*.*" "/var/mail/*")))

(setf (logical-pathname-translations "USERS")

’(("*" "/home/*")))

(setf (logical-pathname-translations "HOST")

’(("**;*.LISP" "/usr/local/lib/lisp/myprogram/**/*.lisp")))

;;; Load the other parts of this program.

(load (translate-logical-pathname "HOST:IO.LISP"))

(load (translate-logical-pathname "HOST:CLASSES;BOX.LISP"))

(load (translate-logical-pathname "HOST:CLASSES;LOGAN.LISP"))

Figure 9.1: Example of a Lisp source file with embedded, hard-coded logical
pathname translations

9.2. LOGICAL PATHNAME MISCELLANEOUS THINGS 25

9.2 Logical Pathname Miscellaneous Things

You can specify logical namestrings in upper case or lower case. They are
always converted to upper case internally, then converted to the customary case
of your file system when they are converted to literal pathnames. I prefer to
write them in upper case because it helps me remember they are logical, not
local, namestrings & because all upper case looks so klunky computerish, which
I find I like as I get older.

Because logical namestrings are translated to upper case first, they & their
translated local pathnames are effectively insensitive to case. In other words,
don’t rely on case in any way in the pathnames your program manipulates.
The translated local pathnames might contain mixed case or have case-sensitive
parts, but the parts derived from parts of the logical pathname cannot have
mixed case or be case-sensitive.

9.3 Namestring to Pathname

If your program reads a literal, file-system-dependant namestring as an input
& needs to manipulate it, you should convert it into a pathname so you can
manipulate it in a way that is independant of the file-system’s type. (That’s
pretty much the purpose of pathnames.)

When would this situation arise? Pretty much any time a user or some other
external entity specifies a file for your Lisp program to manipulate. Whether
you’ve prompted a user to enter a filename at the keyboard or displayed a graph-
ical file-chooser window, your program will probably obtain a literal namestring
that specifies a file according to the conventions of the file system.

The simplest way to convert a string to a pathname is with the pathname

function. Just give it the string, & it’ll give you a pathname. The namestring
should contain only characters that are allowed in the file-system’s pathnames.
You should trim unwanted or padding characters from the string first.

For more control, you can use the parse-namestring function. The extra
control mostly comes from the optional :start, :end, & :junk-allowed key-
word arguments, but besides the pathname, parse-namestring also returns the
number of characters parsed, in case you needed to parse the rest of the string.
See [Ste90] or [X3J] for the details of parse-namestring.

9.4 Validating Namestring Input

9.5 Finding Your Program’s Configuration File

9.5.1 Per-User

To find the configuration file for the current user, you program can call user-homedir-pathname
without specifying the optional hostname argument. That function will return
a pathname. If your program assumes a hard-coded name for the configuration

26 CHAPTER 9. COMMON TASKS

file, you can use merge-pathnames to construct the pathname for your con-
figuration file from the pathname you fetched from user-homedir-pathname.
Figure 9.2 shows an example. It is also in per-user-config.lisp.

If your Lisp’s user-homedir-pathname has the same notion of home direc-
tory as Unix does, this technique agrees well with the Unix way of doing things.

I don’t know what Lisps for other operating systems consider a home direc-
tory, nor do I know what other operating systems consider a home directory, so
I’m not sure how well this technique agrees with the conventions of those other
environments.

Another potential problem with this technique is that you must choose a
name & type for your configuration file that is expressable in any file system.
I hope that a lower-case alphabetic word of 6 characters or less will work in
all cases, with the Lisp converting the lower-case to upper-case (or whatever) if
necessary. I know that a lower-case alphabetic word of 8 characters or less will
work in most cases.1

9.5.2 System-Wide

A system-wide configuration file for a program is a configuration file that is
loaded regardless of which user is running the program. An example from Unix
might be /etc/lynx.conf, which is the configuration file for the lynx Web
browser.

A task couldn’t be easier. Just hard-code a logical namestring for your
program’s configuration file. The installation program is responsible emitting a
translation to the actual configuration file.

If you have just one configuration file for the whole program, you might have
a translation like the one in Figure 9.3.

To load that single configuration file, just EVAL “(load (translate-logical-pathname

"HOST:CONFIG.LISP"))”.
If your program’s configuration is complex enough that it is separated into

multiple files, you’ll need a more complex translation, such as the one in Fig-
ure 9.4.

You’ll need to translate a logical pathname & load the result for each of
your configuration files. For example, you might need to translate, then load,
HOST:CONFIG;USERS.LISP, then HOST:CONFIG;PERMISSIONS.LISP.

9.6 Computing One Pathname from Another

When your program reads a namestring as input, maybe from a human user who
selects a file to open & process, you might need to construct a pathname from
the namestring. Maybe your program is a text editor & tries to make a backup
of a file before editing it. Maybe the user specifies a directory & a basename

1Let me be clear about “lower-case alphabetic” words. I mean a string containing only the
letters a through z. No upper-case letters, no digits, no punctuation, no spaces, & no special
characters.

9.6. COMPUTING ONE PATHNAME FROM ANOTHER 27

;;; Here are some expressions which determine

;;; the pathname of "this" program’s

;;; configuration file. For clarity, I’ll

;;; make liberal use of temporary variables,

;;; though that is not the usual Lisp style.

(defvar *home* (user-homedir-pathname)

"User’s home directory. We’ll borrow the

Unix convention that configuration files

live in a user’s home directory.")

(defvar *name* "myprog"

"The name of the configuration file.

It might be a good idea if it has the

same name as the program. If we stuck

strictly with the Unix convention, it would

begin with a dot, but that isn’t portable to

all file systems, \& it might give the

pathname functions of some Lisps a

heart-attack.")

(defvar *type* "rc"

"The type of the configuration file.

Could be nearly anything. For

portability, it’s safest to have a file

type, \& there is precedent for rc.")

(defvar *basepath*

(make-pathname :name *name*

:type *type*

:version :newest)

"We’ll create the config file’s actual

pathname by merging this with the

pathname of the user’s home directory.")

(defvar *config*

(merge-pathnames *basepath* *home*)

"And now *CONFIG* is bound to the

pathname of the config file.")

(format t "~&~A" (namestring *config*))

;;; --- end of file ---

Figure 9.2: Example of finding a per-user configuration file

28 CHAPTER 9. COMMON TASKS

;;;

;;; A logical pathname translation for a program

;;; with a single system-wide configuration file.

;;;

;;; The local namestring here is for Unix.

;;;

(setf (logical-pathname-translations "HOST")

’("CONFIG.LISP" "/etc/myprogram-config.lisp"))

Figure 9.3: A logical pathname translation for a program with a single system-
wide configuration file

;;;

;;; A logical pathname translation for a program

;;; with multiple system-wide configuration files.

;;;

;;; The local namestring here is for Unix.

;;;

(setf (logical-pathname-translations "HOST")

’("CONFIG;*.LISP" "/etc/myprogram-config/*.lisp"))

Figure 9.4: A logical pathname translation for a program with multiple system-
wide configuration file

9.7. OBTAINING A PORTABLE NAMESTRING FROM A PATHNAME 29

The contents of merge-examples.lisp go here.

Figure 9.5: Some examples of merging pathnames

for your program, & your program creates several output files in that directory
& with that name but with different types (a.k.a. filename extensions).

It’s easy to construct pathnames from other pathnames for those exam-
ples. First, obtain a pathname from the namestring you read. Then call
merge-pathnames using the first argument as a mask for the pathname you
obtained from the user. Figure 9.5 has some examples of such mergest, & the
Lisp source file containing them is online (merge-examples.lisp).

A problem with the examples in Figure 9.5 is that they hard-code the com-
ponents of non-logical pathnames. That is technically non-portable, though I
suspect it will work in the majority of modern cases. Nevertheless, it would be
nice to know how to do equivalent translations using logical pathnames.

A complexity (problem) with obtaining the template (first) argument of
merge-pathnames is that logical pathnames require logical hostnames, but the
actual file system might not use hostnames (which is not a problem) or may use
hostnames (which poses a problem).

fixme: How do you get a component for your pathname template that you
give as the first argument to merge-pathnames? If you hard-code a literal, your
program is not portable, but to use a logical namestring, you must provide a
logical host, which will be portable only to homogenous networks. ???

9.7 Obtaining a Portable Namestring from a Path-

name

You can’t.
You might think you could use the namestring function on a pathname with

“:case :common” to get a portable string representing the pathname. Not
so. That’s because the string representation will probably contain your file
system’s idea of directory-name separators, host indicators (if it has one), type-
separators, & version information (if it has that). The “:case :common” will
put the string into a special representation that’s designed to make case portable,
but the string as a whole will not be portable.

I suppose that you might be able to search the logical pathnames you pro-
gram hard-codes to find a representation that best fits a truename, but you’d
have to implement it yourself. It could be a lot of work, & I could imagine
situations in which there would be no unique result or not result at all.

30 CHAPTER 9. COMMON TASKS

Chapter 10

Example Code

10.1 The Current Directory

Many operating systems1 have a concept of a current directory. In unix, it is
accessed with the getcwd function in the C library & the chdir system call.

Common Lisp has a similar notion, but it is (or can be) implemented in the
Lisp system, above the operating system, which is kind of cool in my opinion.

In Lisp, the current directory is bound to a global symbol called *default-

pathname-defaults*.
When you create a pathname object with make-pathname, the attributes

you don’t specify are taken from the attributes in *default-pathname-defaults*,
so *default-pathname-defaults* is basically your current directory. You
can change Lisp’s current directory by binding a different pathname to *default-

pathname-defaults*.
A Lisp implementation may or may not make use the the underlying operat-

ing system’s notion of a current directory. For portability, I would recommend
that you assume Lisp initializes *default-pathname-defaults* from the op-
erating system’s current directory when you start Lisp, so if you start Lisp from
the directory containing files you want to access, you may access those files
without worrying about current or default directories. To access anything else,
you should use a full pathname or change *default-pathname-defaults*.

10.1.1 Example

Here’s an example of accessing files in different directories from within Lisp.
The Lisp I used was SBCL 0.8.8. To show how its idea of the current direc-
tory interacts with the operating system’s (some distro of Linux in this case, I

1I think I’ve used just three operating systems that didn’t have a concept of a current
directory. They were HP 2000, HP 3000, & IBM 360. On the other hand, all three had a
concept of a place where a user kept his files; maybe that place could be considred a current
directory. If so, then the current directory was set when the user logged in & could not be
changed.

31

32 CHAPTER 10. EXAMPLE CODE

forget exactly which one), I’ll do some of the work outside of Lisp, on the unix
command line.

Let’s start in a disposable temporary directory.

$ pwd

/home/gene/tmp/example

Inside that directory, let’s create one data file. Let’s also create a nested
directory which contains yet another data file. I’ll create those data files with
unix’s echo program just to be quick about it.2

$ echo \"this file is aa.lisp\" >aa.lisp

$ mkdir dir

$ echo \(choo choo cha cha\) >dir/bb.lisp

$

Okay, so now we have a file called aa.lisp, a directory called dir, & another
file called dir/bb.lisp. Here’s a picture of that in outline form in case that’s
easier to understand:

• aa.lisp

• dir/

– bb.lisp

All of those are relative to the operating system’s idea of the current direc-
tory.

Let’s start SBCL from this current directory & see how we can access those
files.

$ sbcl

This is SBCL 0.8.8, an implementation of ANSI Common Lisp.

More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.

It is mostly in the public domain; some portions are provided under

BSD-style licenses. See the CREDITS and COPYING files in the

distribution for more information.

*

First, take a look at *default-pathname-defaults*.

* *default-pathname-defaults*

#P"/home/gene/tmp/example/"

*

2I mention that because, if you aren’t ready for it, seeing echo & a couple of escaped
parents & an output redirection might be a bit of a shock.

10.1. THE CURRENT DIRECTORY 33

After starting Lisp, the value bound to *default-pathname-defaults* is
the same as the operating system’s current directory. That means that if we use
Lisp’s directory function without specifying the path parts of the pathname
mask, we should see aa.lisp file & the dir directory.3

For convenience, let’s make a pathname mask global variable.

* (defvar *pn* (make-pathname :name :wild :type :wild :version :wild))

PN

*

Now let’s see what files we can see with that pathname mask. Notice that it
does not specify any directory parts, so when we use the new mask, it will get
its directory parts from *default-pathname-defaults*.

* (directory *pn*)

(#P"/home/gene/tmp/example/aa.lisp" #P"/home/gene/tmp/example/dir/")

*

So at this time, Lisp’s idea of the current directory is the same as the oper-
ating system’s when we started SBCL. The proof is in the pudding, so let’s try
reading from that aa.lisp file.

* (with-open-file (strm "aa.lisp")

(read strm))

"this file is aa.lisp"

*

We opened a file called aa.lisp, & it was the same aa.lisp that we created
from the unix command line.

Now let’s do a similar thing with the bb.lisp file. It’s in the directory
dir which is in the current directory, so to access it, we will need to specify a
directory part.

* (with-open-file (strm (make-pathname

:directory ’(:relative "dir")

:name "bb" :type "lisp"

:version :newest))

(read strm))

(CHOO CHOO CHA CHA)

*

3On some Lisps, such as clisp, you might not see the directories unless you take special
steps. With the, you might see just files.

34 CHAPTER 10. EXAMPLE CODE

Now let’s play with Lisp’s idea of the current directory. We can do that by
binding a new pathname object to *default-pathname-defaults*.

* (setq *default-pathname-defaults*

(make-pathname :directory ’(:relative "dir")))

#P"dir/"

* (directory *pn*)

WARNING:

DEFAULT-PATHNAME-DEFAULTS is a relative pathname. (But we’ll try using it

anyway.)

NIL

*

Okay, so SBCL doesn’t like a relative directory in *default-pathname-

defaults*. Let’s try something else. First, let’s put *default-pathname-

defaults* back the way it was.

* (setq *default-pathname-defaults* #P"/home/gene/tmp/example/")

#P"/home/gene/tmp/example/"

*

Let’s construct a new *default-pathname-defaults* that is absolute.
We can do this by mergine a new pathname with the current *default-pathname-

defaults*.

* (setq *default-pathname-defaults*

(merge-pathnames

(make-pathname :directory ’(:relative "dir"))

default-pathname-defaults))

#P"/home/gene/tmp/example/dir/"

*

Now let’s try the directory function again with the new *default-pathname-

defaults*.

* (directory *pn*)

(#P"/home/gene/tmp/example/dir/bb.lisp")

*

Woohoo! Check it out. We’ve changed Lisp’s idea of the current directory by
binding a new pathname object to *default-pathname-defaults*. Remem-
ber that the new pathname needed to be absolute. Maybe some Lisp’s won’t

10.2. DIRECTORY TRAVERSAL 35

(defun wildcard-dir (pn)

"PN is the pathname of a directory itself. In other words,

(pathname-name pn) returns a string, not :WILD or another wildcard.

WILDCARD-DIR returns a new pathname that matches the names in

directory PN."

(make-pathname :directory (append (pathname-directory pn)

(list (pathname-name pn)))

:name :wild))

(defun traverse (root)

(do ((x (list root)

(rest (append x (directory (wildcard-dir (first x))))))

(count 0 (1+ count)))

((endp x) count)

(format t "~&~A" (namestring (first x)))))

Figure 10.1: Lisp program to traverse directories

have a problem with relative directories in *default-pathname-defaults*,
but SBCL wanted an absolute one, & we were able to make a new absolute path-
name by merging a new pathname with the old value of *default-pathname-

defaults*.

One last thing. Let’s quit Lisp & see what the operating system says is our
current directory now.

* (quit)

$ pwd

/home/gene/tmp/example

$

So changing *default-pathname-defaults* did not change the operating
system’s idea of the current directory (and I’m not surprised).

10.2 Directory Traversal

There’s a directory-traversal program in Figure 10.1. It’s available in a file by
itself on the WWW at traverse.lisp.

You’d think that if I loaded that program & then evaluated on a Unix system
“(traverse (pathname ‘‘/’’))”, it would print every file & directory on the
system, but no such luck. At least, no such luck with the clisp I use because
its directory function doesn’t include subdirectories in the list it returns. (See
Section 11.1 for a discussion.)

36 CHAPTER 10. EXAMPLE CODE

If the behaviour of clisp’s directory isn’t a quirk, if it’s true of other Lisps,
then maybe you can’t visits all the nodes in a subdirectory tree using plain
Common Lisp.

Chapter 11

Quirks & Gotchas

11.1 clisp’s directory function

clisp’s directory function never includes other directories in the list it returns.
Whether this is an implementation choice or a bug, I don’t know. Specifically,
it’s clisp version 2.28 (released 2002-03-03).

I haven’t tried the directory function on other Lisps. Don’t know how they
handle this situation.

37

38 CHAPTER 11. QUIRKS & GOTCHAS

Chapter 12

The Value of Portability

Some people might ask why anyone would even think about obscure file system
with limits that are restrictive by today’s standards, since systems like that
are so rare as to be effectively non-existent. For example, file systems with
6-character limits on names or 3-character limits on types.1

Those people miss the point of portability. I used at least three file systems
in college that had 6-char limits.2 You may think that you will never use such a
system, & you’re probably right, which is too bad for you, ’cause alien computer
systems from another age are fun, & they expand your mind, just like Lisp does.

The point of portability isn’t just to help you port your programs to systems
on which you predict you’ll someday use them.3 It’s also so more people can
port your programs to their alien computers.

Besides, if a little extra thought (which is what I’m recording in this paper)
increases portability hugely, why not? I don’t suggest that anyone spend years
of their lives figuring out how to write a file system compatibility layer for com-
puters with drum memory, or an OpenGL API for Babbage engines. Obviously,
there are trade-offs & time limits. I’m talking about cases in which a reasonable
amount of forethought & care produces a large pay-off in portability.

It is important, & it’s fun. If you don’t know that, you haven’t been around
long enough to port enough of your old programs.

1Someone from the past, using one of those systems, might wonder how anyone could use a
file system that was so primitive that it did not support built-in versioning or complex record
types.

2If I remember correctly, an HP/2000, an HP/3000, & a Cray something-or-other. I think
the HPs ran something called MultiProgramming Environment (MPE), but I could be woefully
mistaken. All of those file systems limited filenames to six characters. I think that at least
one of them (can’t remember which) didn’t even have filename extensions (types).

3And how accurate can your predictions be?

39

40 CHAPTER 12. THE VALUE OF PORTABILITY

Chapter 13

Blue Sky Dreaming

Notice that Common Lisp’s logical pathnames support versioned files. The file
systems of some operating systems which are no longer in the vogue supported
versioned files, too. Modern, popular file systems do not support versioned
files, though we have version control systems available for our modern operating
systems. Examples of version systems include RCS, CVS, & Clearcase.

Wouldn’t it be cool, or at least interesting, if a Lisp expanded on the local
file system’s namestring notation to include versioning, & it implemented that
versioning by transparently making use of RCS, CVS, Clearcase, or some other
versioning system installed on the modern operating system?

41

42 CHAPTER 13. BLUE SKY DREAMING

Chapter 14

Other Documentation

Of course, the definitive documentation is the Lisp standard, which does not
appear to be online.

Some nearly definitive documentation is in the Steele book ([Ste90]) & the
Common Lisp Hyperspec ([X3J]).

43

44 CHAPTER 14. OTHER DOCUMENTATION

Chapter 15

Other Formats of this

Document

Other formats of this document are available for your printing & reading enjoy-
ment.

There is a PostScript version1.
There is a Device Independent (DVI) version2 which was the direct output

of the LATEX compiler.
I would make the Pointless Document Format (PDF) file available but

pdflatex doesn’t grok the LATEX html package, & I don’t have the time to
beat it into cooperation. Sorry (seriously).

1pathnames-0.ps
2pathnames-0.dvi

45

46 CHAPTER 15. OTHER FORMATS OF THIS DOCUMENT

Chapter 16

Unresolved Thoughts

These are thoughts & notes for my own benefit. (If I had answers to them or
was certain they weren’t off the deep end, I’d probably incorporate them into
the rest of the article.)

• How to find libraries & other parts of the application at load-time? Logical
pathnames?

• How to locate libraries at configuration & installation time? Let ./configure
do it? How to convey this information to the application? Does ./configure
write a “loader” file that contains hard-coded logical pathname transla-
tions & then evaluates load for all the files it needs? But if you were
writing a custom loader file, why bother with logical pathname transla-
tions at all? Why not write actual, system-specific pathnames into the
loader file? If you put the logical pathname translations into a file of
their own (produced by ./configure), you still need to hard-coded the
literal pathname to that file in the loader file. I guess it’s a chicken-&-egg
problem, & it suggests that logical pathnames have little use.

47

48 CHAPTER 16. UNRESOLVED THOUGHTS

Bibliography

[Ste90] Guy L. Steele. Common Lisp: The Language. Butterworth-Heinemann,
second edition, 1990. ISBN 1-55558-041-6.

[X3J] ANSI Committee X3J13. Common lisp hyperspec. Xanalys Web site.
http://www.lispworks.com/reference/HyperSpec/.

49

