
Vigenere Cipher in Lisp

gene m. stover

created Tuesday, 2004 August 3
updated Monday, 2006 April 17

Copyright copyright 2004, 2006 Gene Michael Stover. All rights reserved. Permis-

sion to copy, store, & view this document unmodified & in its entirety is granted.

1 What is the Vigenere Cipher?

Vigenere is a symmetric, polyalphabetic substituion cipher. The “substitution”
part of that label means that it encrypts by replacing characters. The “polyal-
phabetic” part of that label means that it uses a different ciphertext alphabet
for each character it encrypts – until it runs out of alphabets & re-uses the first
one again. The “symmetric” part means that it uses the same key for encryption
& decryption.

Here’s an example:

1. Let the plaintext be “hello world”. (The plaintext alphabet is all twenty-
six case-insensitive letters written as lower case. The ciphertext alphabet
is all twenty-six case-insensitive letters written as upper case.)

2. Let the encryption key be “vig” (as in Vigenere).

3. The first character from the plaintext, “h”, is encrypted with the first
character from the key, “v”. H is letter number seven from the alphabet,
V is the 22nd letter in the alphabet, so we add the 21 from V to the seven
from H, giving us 28. We map 28 back into the alphabet with a mod 26,
which is two. Letter number two of the alphabet is C. So the first letter
of the ciphertext is C.

4. Encrypt the second letter of the plaintext, “e”, with the second letter of
the key, “i”, in the same way. E is the fifth letter of the alphabet, I is the
ninth, so the next ciphertext letter is 5 + 9(mod26) → 14 → N .

5. Encrypt the third plaintext letter, “l” with the third key letter, “g”, giving
S.

6. Four the fourt plaintext letter, “l”, we’re out of key characters, so we cycle
back to the beginning of the key. So we encrypt the fourt plaintext letter
with the first key letter. V encrypts L to F.

1



Notice that we’ve encrypted L twice, but the first L encrypted to S, while
the second L encrypted to F.

7. Continue encrypting the rest of the letters of the plaintext in the same
way.

8. The final ciphertext is “CMRGW RWXGL”.

Decrypt Vigenere ciphertext by using the key to tell how to shift ciphertext
letters backwards in the alphabet, giving the plaintext letters.

Vigenere is described with more skill than I have in [?], [?], & [?].

2 Security of Vigenere

The Vigenere cipher is an old cryptosystem from the days of pen & paper.
Because it was designed to be secure against pen & paper, it wouldn’t hold up
for a microsecond against modern professional cryptanalysis software on fast
computers, & it might not hold up that long against cryptanalysis on a home
computer. Vigenere is not sufficient for security in a modern, computerized
environment.1

3 What’s Interesting about My Implementation

The Vigenere cipher itself is probably of interest & use only to people who
care about the history of cryptology. So why should you be interested in this
implementation of the Vigenere cipher?

I can’t honestly say that you should be interested, but I think I did a few
things that are worth noticing.

3.1 Parameterized Alphabet

The main cool thing is the alphabet parameter to the encryption & decryp-
tion functions. Most encryption & decryption functions assume that you are
encrypting octets. Maybe that’s fine most of the time, but it would be good to
choose the alphabet sometimes. I think all encryption & decryption software
should allow you to specify the alphabet, if appropriate.

3.2 Circular Lists

Encryption & decryption loop over the key. When the loop runs out of letters
in the key, it returns to the first letter in the key.

The most common way to do this is probably to store the key in a vector &
to put a range check around the index after it is incremented.

1And the fact that I’m telling this means that I’m aware of it, so I don’t need people to
e-mail me to let me know that Vigenere is old & that there are more secure cryptosystems to
be had now. Duh! Everyone wants to demonstrate that he’s cryptosavvy.

2



I chose to store the key as a circular list so the cdr of the last letter in the
key is the first letter of the key. In other words, cdr always returns the correct
value, with no need to do arithmetic on a vector’s index.

This trick helped shorten the loop, but the initialization code (in function
make-alphabets) is more complex than the initialization code for an encryp-
tion function that assumes the characters are octets. In fact, I dislike the ini-
tialization code. Neither do I like how I implemented decryption; I think there
could be a cleaner way.

4 The Complete Source Code

The source code is at ./vigenere.lisp2 . I release it under the terms of The Gnu
Lesser General Public License ([?]).

5 Usage

My implementation of Vigenere is in just one source file, vigenere.lisp.
Load it into your Lisp with an expression like this:

> (load "vigenere.lisp")

T

The single function for encryption is vigenere-encrypt. It’s two required
arguments are the plaintext & the key. It has a third argument, the alphabet,
but we’ll discuss that in Section 5.1.

The plaintext & the key must be sequences, but they may be any kind of
sequence, namely lists or vectors. There are no restrictions on the elements
within them as long as they are in the alphabet. The alphabet defaults to
alphanumeric characters, so we’ll use that for now.

Here’s an example of encryption & decryption:

> (defvar *plaintext* "hello world")

*PLAINTEXT*

> (defvar *key* "vig")

*KEY*

> (defvar *ciphertext* (vigenere-encrypt *plaintext* *key*))

*CIPHERTEXT*

> *ciphertext*

"MwBQG 1GHQv"

> (vigenere-decrypt *ciphertext* *key*)

"hello world"

> (equal * *plaintext*)

T

2http://cybertiggyr.com/gene/vig/vigenere.lisp

3



Or, to be really really terse about what’s going on:

> (equal (vigenere-decrypt

(vigenere-encrypt

*plaintext* *key*)

*key*)

*plaintext*)

T

5.1 Alphabets

Compare the ciphertext from this recent example, “MwBQG 1GHQv”, to the
one we got in the first example, “CMRGW RWXGL”. They’re different? What
gives?

What gives is that we used different alphabets in the first example encryption
& this more recent one. The alphabet from the earlier example consisted of the
case-insensitive letters, but the more recent example used default alphabet for
vigenere-encrypt, which is the case-sensitive letters & the numbers.

I can use my vigenere-encrypt & vigenere-decrypt functions to re-
produce the first example if I also specify an appropriate alphabet. Here’s how:

To specify a case-insensitive alphabet, I’ll create an alphabet of all the letters
in one case. I choose upper case because it reminds me of what people thought
of computers back before 1980. For brevity, I’ll make the non-portable, though
probably correct, assumption that my computer uses the ASCII character set.
I can collect the upper case letters into a list like this:

> (defvar *myalphabet*

(loop for i from (char-code #\A)

to (char-code #\Z)

collect (code-char i)))

*MYALPHABET*

The plaintext & key are in lower case, so I must remember to map them
to my alphabet case before encrypting it. That’s easy enough with string-
upcase. I’ll use the *plaintext* & *key* global variables I defined in the
previous example.

Here’s my vigenere-encrypt function used to reproduce the first example:

> *plaintext*

"hello world" ; same as it ever was

> *key*

"vig" ; same as it ever was

> (setq *ciphertext*

(vigenere-encrypt

(string-upcase *plaintext*)

(string-upcase *key*)

*myalphabet*))

"CMRGW RWXGL"

4



For convenience, this alphabet of upper case letters is defined in vigenere.lisp

as *vigenere-simple-alphabet*.
If I hadn’t mapped the plaintext to upper case, vigenere-encrypt wouldn’t

have encrypted it because I wrote vigenere-encrypt to pass characters that
aren’t in the alphabet without encrypting them. Here’s what would have hap-
pened it I hadn’t converted the plaintext to upper case:

> (vigenere-encrypt

*plaintext*

(string-upcase *key*)

*myalphabet*)

"hello world"

The key must be in the alphabet, or we’ll get an error. Here’s an example:

> (vigenere-encrypt

(string-upcase *plaintext*)

*key*

*myalphabet*)

crisp runtime: TYPE-ERROR

$

Switching between subtle variations of text alphabets only scratches the
surface of what can be accomplished with the alphabet parameter.

With the alphabet parameter, vigenere-encrypt can operate on octets.
Here’s an example:

The alphabet is all the positive integral values less than 256:

> (defvar *octets*

(loop for i from 0 to 255 collect i))

*OCTETS*

Plaintext is the binary data, maybe from some binary file:

> (setq *plaintext* (list 0 1 2 253 254 255))

(0 1 2 253 254 255)

The key must be binary, but instead of making our correspondent remember
a list of arbitrary byte values, we’ll let her remember a keyword, which we’ll
convert to binary values. (We’re assuming that my computer & our correspon-
dent’s computer use the same character set.) We could create they key of octet
values from a keyword like this:

> (setq *key*

(loop for i across "vig" collect (char-code i)))

(118 105 103)

Now let’s encrypt it:

5



> (setq *ciphertext*

(vigenere-encrypt *plaintext* *key* *octets*))

(118 106 105 115 103 102)

After my correspondent had set her *octets*, *key* & *ciphertext*
global variables, she could decrypt it like this:

> (vigenere-decrypt *ciphertext* *key* *octets*)

(0 1 2 253 254 255)

. . . which is the same as the original plaintext:

> (equal * *plaintext*)

T

The alphabet parameter can even be used to encrypt things other than
characters & octets. Let’s encrypt a list of symbols.

First, let’s make an alphabet from a bunch of the usual Lisp symbols. Let’s
also make a key using those symbols:

> (setq *myalphabet*

(list ’defun ’+ ’- ’let ’car ’cdr

nil t ’equal ’foo ’x ’i ’loop

0 1 2 3 ’test ’my ’a ’list))

(DEFUN + - LET CAR CDR NIL T EQUAL FOO X I

LOOP 0 1 2 3 TEST MY A LIST)

> (setq *key* ’(defun foo i let x))

(DEFUN FOO I LET X)

Now let’s set a plaintext, encrypt it, & test the decryption:

> (setq *plaintext* ’(let my defun test a list of car))

(LET MY DEFUN TEST A LIST OF CAR)

> (setq *ciphertext*

(vigenere-encrypt *plaintext* *key*

*myalphabet*))

(LET () I LIST EQUAL LIST OF 2)

> (equal *plaintext*

(vigenere-decrypt

*ciphertext* *key* *myalphabet*))

T

Why would you want to encrypt a sequence of symbols? Heck, I don’t know,
but you can. Maybe there is some cool trick that could be done with encrypted
Lisp source code.

6



A Vigenere in Pascal

Here is source code for a Vigenere cypher in Delphi Pascal. It’s pretty plain;
it’s not a Delphi component.

I’m not an experienced Pascal programmer, so I apologize for making näıve
Pascal mistakes. I suspect I made such a mistake when I used ArrayOfOctets.

By the way, you’ll need to define your own ArrayOfOctets type. Something
like “type ArrayOfOctets = Array of Byte”.

I have actually used this code on a project. I wrote it from scratch, for
myself, & it’s licensed the same as the Lisp code in this essay.

unit GeneraVigenere;

(*

* Vigenere encryption & decryption on arrays of octets.

*)

interface

uses GeneraTypes;

(*

* Decrypt a Vigenere-encrypted binary message. Return the plaintext.

*)

function Decrypt (ciphertext, key : ArrayOfOctets) : ArrayOfOctets;

(*

* Encrypt a message via Vigenere & the key. Return the cyphertext.

*)

function Encrypt (plaintext, key : ArrayOfOctets) : ArrayOfOctets;

implementation

uses SysUtils;

function Decrypt (ciphertext, key : ArrayOfOctets) : ArrayOfOctets;

var

plaintext : ArrayOfOctets;

ti : Integer; (* {cipher, plain} Text Index *)

ki : Integer; (* Key Index *)

begin

SetLength (plaintext, Length (ciphertext));

ki := 0;

for ti := Low (ciphertext) to High (ciphertext) do begin

plaintext[ti] := (ciphertext[ti] + key[ki]) mod 256;

ki := ((ki + 1) mod Length (key)) + Low (key)

end;

7



Decrypt := plaintext

end; { Decrypt }

function Encrypt (plaintext, key : ArrayOfOctets) : ArrayOfOctets;

var

ciphertext : ArrayOfOctets;

ti : Integer; (* {cipher,plain}Text Index *)

ki : Integer; (* Key Index *)

begin

SetLength (ciphertext, Length (plaintext));

ki := 0;

for ti := Low (plaintext) to High (plaintext) do begin

ciphertext[ti] := (plaintext[ti] - key[ki]) mod 256;

ki := ((ki + 1) mod Length (key)) + Low (key)

end;

Encrypt := ciphertext

end; { EncryptVigenere }

end.

References

8


